New Zealand’s contribution

Last year at the 21st United Nations Conference of Parties (COP21) in Paris, 195 countries negotiated a global agreement to address climate change. The agreement does not stipulate specific emissions reduction targets, unlike its predecessor, the expired Kyoto Protocol. Instead each negotiating party was asked to voluntarily submit their Intended Nationally Determined Contributions (INDC) for reducing global emissions.

New Zealand’s INDC commits to reducing greenhouse gas (GHG) emissions to 30-percent below 2005 levels by 2030. Currently, renewables comprise around eighty-percent of New Zealand’s electricity mix. The government plans to increase this to ninety-percent by 2025, following the closure of the two remaining large-scale coal-fired power plants before 2018.

This low-carbon electricity generation is a huge advantage. It might be exploited to decarbonise the transport sector, which produces seventeen-percent of New Zealand’s total GHG emissions. New Zealanders depend heavily on road transport. This is due in part to having a widely dispersed population. Fuel efficiency standards already apply, targeting heavy diesel vehicles for road freight in particular. Fully electrifying public transport networks in Auckland and Wellington, as well as providing incentives for private ownership of electric vehicles, would go some way to reducing GHG emissions from the transport sector.

Yet agriculture contributes almost half of New Zealand’s total GHG emissions. The sheer size of the agricultural sector is impressive given the island nation’s size and population. New Zealand produces around a fifth as much milk as the US – a country seventy times more populous. Agriculture is also behind New Zealand’s high carbon intensity per capita – fifth among industrialised nations.

Nevertheless, New Zealand is one of the world’s most efficient agricultural producers. Milk production has trebled since the 1990s though methane emissions from cattle doubled. New Zealand has been successful in researching and adopting efficient farming practices. This includes effective pasture management, and breeding and feeding animals to yield more milk and meat. The New Zealand Agricultural Greenhouse Gas Research Centre is investigating  new means to breed or feed sheep and cattle so that they produce less methane, or introduce enzymes to their stomachs, through harm-free drug treatment or vaccination, that reduce their methane emissions. The government has committed $48.5 million to the New Zealand Agricultural Greenhouse Gas Research Centre before 2019. A further  $45 million is earmarked for the Global Research Alliance on Agricultural Greenhouse Gases. These institutes promote technologies and practices to reduce agricultural GHG emissions worldwide.

Reducing New Zealand’s agricultural emissions is a significant challenge. Until better technology is developed and widely deployed to capture or mitigate agricultural emissions the government does not expect that aggregate agricultural emissions will be reduced substantially beyond 2030. In the same vein, low-carbon technology must be widely deployed within the transport sector to encourage further emissions reductions post-2030.

This is why the New Zealand government supports a global carbon market. Currently an Emissions Trading Scheme (ETS) operates in New Zealand. Transport fuels are included to incentivise less carbon intensive forms of transport, but the scheme excludes pastoral agriculture. The inclusion of this sector would significantly affect New Zealand’s global competitive advantage and exports.

New Zealand’s agricultural emissions are ultimately associated with meat and dairy products consumed elsewhere in the world. Almost all agricultural produce is exported. New Zealand agricultural producers could not pass on the cost of carbon to consumers even if they were required to participate in the NZ ETS, since China, the US, Australia, Japan, the UK and other importers are liable to seek lower-cost supplies in the global marketplace. If other agricultural exporting countries were required to integrate a carbon price into their sales then the playing field would be more even. In fact New Zealand would have an advantage as one of the more productive agricultural exporters. This would also incentivise low-carbon farming and food production globally.

Currently, the electricity sector is leading the charge to decarbonise the world’s economy by encouraging the uptake of renewables. Yet agriculture comprises 14.5 percent of global GHG emissions. To realise more ambitious reductions in the next decade and beyond, significant research, development and funding needs to be directed towards agricultural technology and practices.

Or we might consider the vegetarian’s solution to climate change. Demand for meat has been rapidly rising in developing and emerging economies including China, India and Brazil. Though a reversal of this trend – and reduced global demand for meat and dairy – may not be the solution that the New Zealand government pictured.

Advertisements

La question nucléaire: à la recherche d’une énergie parfaite

En 1985, deux agents français ont sabordé le navire Rainbow Warrior de l’organisation écologiste Greenpeace dans le port d’Auckland en Nouvelle Zélande. Cette opération, effectuée dans la mer territoriale néo-zélandaise, a été conduite sur ordre explicite du Président de la République Française, François Mitterrand. Le Rainbow Warrior faisait alors cap vers l’atoll de Moruroa, situé en Polynésie française, où les militants de Greenpeace avaient tenté d’empêcher des essais nucléaires menés par les militaires français.

Cet incident a marqué un tournant décisif dans la politique néo-zélandaise puisque la résistance au nucléaire est devenue une partie importante de l’identité nationale néo-zélandaise. Cela est toujours le cas aujourd’hui. Tandis que la France se montre toujours fière de ses prouesses technologiques dans le domaine nucléaire, également en matière de production énergétique.

En France, le nucléaire constitue deux tiers de la production électrique, alors que quatre-vingt pour cent de l’électricité est produite de façon renouvelable en Nouvelle-Zélande. Cela ne signifie pas pour autant que Nouvelle Zélande produit moins d’émissions de gaz à effet de serre. Au contraire, vu son immense secteur agricole, les émissions par habitant la place en 5ème position dans le monde, soit seize places devant la France. En outre, c’est grâce à sa géographie que les néo-zélandais parviennent à générer la plupart de leur électricité de façon renouvelable, par le biais de la hydroélectricité et de la géothermie. Peu de pays bénéficient d’un tel écosystème qui permet la production d’électricité par ces moyens peu polluants. Normalement, pour augmenter leur capacité à produire de façon renouvelable, les autres pays sont obligés d’investir dans le solaire ou l’éolien, qui ne sont pas sans coûts.

L’énergie nucléaire a clairement des avantages. Elle ne produit pas d’émissions GHG en générant de l’électricité. Deuxième avantage, les français paient un prix moyen d’électricité beaucoup moins cher que les néo-zélandais. De plus, sa capacité de production est très stable, alors qu’en Nouvelle-Zélande, pendant les années de précipitations inférieures à la moyenne, le risque de coupures d’approvisionnement augmente beaucoup vu la dépendance du pays à l’hydroélectricité.

Face à l’obligation de fournir de l’électricité à une population beaucoup plus importante en France qu’en Nouvelle-Zélande, le gouvernement français a dès lors choisi de se tourner vers le nucléaire. En revanche, la consommation néo-zélandaise ne nécessite pas les gros volumes d’électricité que les centrales nucléaires sont capables de générer. Même s’ils n’étaient pas politiquement contre l’énergie nucléaire, les néo-zélandais n’en auraient pas besoin. Cela rend cette décision politique plus facile pour le petit pays qu’est la Nouvelle Zélande.

Néanmoins, nombreux sont les peuples qui ne soutiennent pas non plus l’énergie nucléaire, compte tenu des risques associés trop graves pour être ignorés. C’est le cas notamment aujourd’hui en Allemagne et au Japon, où la majorité de citoyens s’élève contre l’énergie nucléaire, ainsi qu’en Nouvelle-Zélande. En plus de nombreux décès causés par une explosion nucléaire, des maladies graves frapperaient par la suite tous ceux se trouvant à proximité. Après une telle catastrophe, l’environnement local resterait toxique pour des décennies. L’économie agricole de la région serait détruite. Aucune compensation ne suffirait à couvrir les pertes humaines et les dégradations de qualité de la vie pour les survivants. Même si le risque d’accident est statiquement faible, cela ne règle en rien le problème des déchets radioactifs produits lors de la production d’électricité.

Pourtant, le nombre de gens tué dans les explosions des mines de charbon ou affecté par les maladies pulmonaires est plus important que le nombre de victimes des accidents et des bombes nucléaires combinés. À la fin, il faut comprendre que tous les choix ont leur compromis en énergie. Le peuple français ainsi que le peuple néo-zélandais, comme tant d’autres, font face à cette problématique et essaie d’allier l’abordabilité, l’accessibilité et la sécurité tout en limitant les polluants.

En reconnaissant sa violation de la loi internationale par rapport à le naufrage du Rainbow Warrior, la France s’est excusée officiellement en 1988 et les relations diplomatiques avec la Nouvelle-Zélande ont été rétablies. En 1991 un accord d’amitié a été signé entre la France et la Nouvelle-Zélande. Depuis cet accord les deux gouvernements consacrent des fonds à la promotion d’échanges culturels. Les bourses scolaires font partie de ce programme culturel. L’auteure de ce blog était bénéficiaire de cette bourse en 2013 et elle est venue en France pour étudier la politique énergétique. Ce blog vise à comprendre les choix politiques en matière d’énergie sans condamner pour autant, tout en réalisant que l’énergie parfaite n’existe pas.

Climate vs. Weather

Climate change is underway. The mainstream now accepts that human behaviour and industrialisation contributed to increasing the amount of greenhouse gases present in the atmosphere over the last century. Yet, it remains difficult to link specific weather events to climate change.

Climate is not the same as the weather. Weather is a local phenomenon. Also, it is very predictable despite what you might think about your local weather channel. Forecast accuracy increases significantly one week out, one day out, one hour out, as we approach hour zero. Even ten-year olds learn that when winds gather in the harbour and clouds are swept inland, rain will begin to fall as the clouds cool rising above sea level.

Climate is the aggregate of weather patterns on a regional or global scale, averaged out over years, decades or even centuries. Climate systems are “chaotic”. In scientific terms this means highly complex with numerous interdependencies, so it’s very difficult to make predictions.

Scientific models are getting better all the time, but the climate’s “chaotic” nature means even tiny deviations in initial data and assumptions, can lead to wildly divergent results. John Nash’s poetic metaphor, referred to as the butterfly effect, translates this concept into everyday language: when a butterfly flaps its wings, a hurricane is born on the opposite side of the globe. Climate scientists have millions of butterflies to consider.

Furthermore, changes in the aggregate tell us little about the local effects of climate change. Weather scientists can tell us what the weather will be like in London, Dubai or Delhi tomorrow. But climate scientists do not have the same job. They cannot paint a very accurate of picture of what daily weather will be like in Delhi in ten or twenty years time. Will Californian residents suffer fewer droughts if America bans emissions-intensive coal power production? What colour is the butterfly’s wings?

This is where statistics can play an important role. Statistic climate models measure how likely it is that something will happen. Lord Stern’s landmark 2006 report for the British government (research that was updated in a 2014 report with the Global Commission and the Economy and Climate) evaluates the risks and probabilities associated with climate change – from both a business and government policy perspective – despite scientific uncertainty.

We know that extreme weather events have become increasingly probable. We will witness both more frequent and more intense storms, heat waves, polar vortices, droughts and fires. Landscapes are changing as coastline disappears. Higher average temperatures affect ecosystems. The indirect costs of climate change include crop failure, mass migration, loss of biodiversity and a spread in airborne maladies. Dangerous air pollution in many cities worldwide, caused by burning fossil fuels, furnishes us with yet another reason to quit pumping the gases they produce into the atmosphere.

We also know that certain regions face greater risks than others. As fate would have it the regions most susceptible to climate change’s impacts are those least equipped to deal with them. Such as the Pacific islands and South-East Asia.

Why is that? A priori,  proximity to the ocean and the equator entails more extreme weather, which climate change will exacerbate. Yet, these regions are also less developed. They are incredibly dependent on the weather to ensure reliable food production. Insurance policies are rare. Millions of people live in very simple shelters, easily destroyed in high winds or fires. Their communities often lack modern luxuries such as electricity, televisions, insulation, climate control or running water. This means they are more likely to die during or following an extreme weather event – because they do not receive the evacuation message, cannot adequately shelter themselves or escape the heat or cold, and may starve or be forced to drink contaminated water whilst awaiting disaster relief.

Hurricanes are common in the South Pacific region between November and April. However, earlier this year, Vanuatu was battered by extrordinarily violent winds and rain for which there was little precedent. The initial deaths following Cyclone Pam were tragic. However, starvation and water contamination followed and pushed the death toll up. Economic reconstruction of the region, which is primarily dependent on subsistence farming, will take years.

Another recent example: thousands perished in a dangerous heat wave throughout Pakistan and India’s north where temperatures reached 47 degrees Celsius in May of this year. We cannot overestimate the danger of excessive heat for infants and the elderly. People’s bodies become very stressed under such conditions. This combined with dehydration or sleep deprivation leads to fatalities.

Sceptics are right to doubt that Cyclone Pam or the recent heat wave were directly caused by climate change. Drawing a direct vector between burning fossil fuels and extreme weather events is near impossible as explained above.

Nevertheless, these regions have not benefitted from industrialisation, and the tremendous boost to economic well-being it engendered, to the extent that we have across the developed world. Yet, they will be the first to suffer from industrialisation’s perilous side effects.[1]

This is why Cyclone Pam and the Pakistani/Indian heatwave are relevant. These examples help us to identify what is really important about climate change. Climate change is a question of social justice, not the weather.


[1] Not that pockets of wealth do not exist in these regions or people in more developed parts of the world have never known disaster – as witnessed in 2005, in the United States  following Hurricane Katrina.

Low-hanging fruit

Energy efficiency wants more energy for the same amount of fuel. This means both energy bills and pollution from burning fossil fuels fall – to the delight of government and environmental agencies alike.

There are three key sectors within which efficiency gains can have a significant impact in both the developed and developing world: transportation, buildings and electricity.

Simply replacing old cars and trucks with newer versions reduces overall oil usage per vehicle. New vehicles are built to higher fuel efficiency standards as the technology continues to improve, so that you can drive your car further and further using less and less petrol. Manufacturers were busily engineering new models whose improved fuel use and decreased gasoline bills made them attractive to consumers, even before regulation insisted on higher fuel efficiency. Inefficient and dirty, (but cheap) diesel is now highly regulated in the developed world. It is all but obsolete for passenger vehicles. Low-quality fuels for marine transportation and long-distance trucking have yet to be attacked with the same rigour.

It’s also about not wasting energy. Inefficient buildings release huge amounts of unused heat.  Simple measures include nailing shut the last few millimetres between insulation boards – this final step brings the greatest benefits – or using straight, fat water pipes rather than slim, angular ones. These are not universally understood or implemented.

Insulation, heat pumps and newer appliances compliant with current efficiency standards make a huge difference. The invention of light emitting diodes (LED) revolutionised lighting. Previously incandescent light bulbs lost most of their power as heat. Solar and geothermal installations can make buildings energy neutral or turn them into prosumers.

Although this involve additional costs, many energy savings measures pay for themselves within a few years, as heat and electricity bills are cut.

Retrofitting older buildings and replacing appliances is necessary to address standing building stock. Unlike cars, buildings are not replaced every few years. Most of today’s buildings will still be standing in fifty years – but we suffer from an agency problem. Landlords do not pay the energy bills and tenants do not wish to invest in someone else’s property. Yet, even property-owning households and businesses hesitate to retrofit. This is where government incentives can play a role. Heating, cooling and electrifying buildings makes up a third of global energy consumption, so lifting efficiency by just a few percentage points gets purchase and demonstrates the worth of such efforts.

Efficiency was transforming electricity production until renewables shook up the model making even the most flexible and efficient Combined Cycle Gas Turbine (CCGT) plants, which save and reuse heat produced during power production, unprofitable. Nevertheless efficiency can still give thermal power producers an edge on the competition, since decreased fuel use cuts operating costs. Further, governments are imposing tariffs on heavy polluters including inefficient diesel and coal-fired relics. This additional marginal cost crowds some of them out of the marketplace saving energy and reducing pollution.

Demand-side management can address some of the short-fallings of today’s decentralised electricity system. With smart metering industrial and household consumers can react when electricity is scarce (wind or solar production is low). The higher prices signal factories to run less energy-intensive processes or wait for off-peak prices and hours, and household consumers can decide to take a shower or do their washing later on. In fact  smart grids can even automate some of these decisions, at both the local and national level.

Once upon a time, rising energy consumption was an accurate indicator of how fast an economy was growing. No longer. In the OECD, efficient technologies and smarter policies have decoupled energy consumption and development, proving that environmental concerns need not frustrate economic ones.


Sources:

Invisible Fuel, The Economist

Energy Efficiency topic, International Energy Agency, OECD

Welcome

The perfect energy source – that is cheap, safe, abundant, reliable, environmentally friendly and producible on any scale – doesn’t exist.[i] When it comes to energy, we can’t avoid making judgment calls. Energy is policy. It is a choice.

Do we want the most stable, reliable electricity production possible? A government-sponsored nuclear industry, like France’s, makes sense.

Or is cheapest best? This is most relevant to developing economies. Coal is abundant, transportable and very cheap. And very polluting. China is the world’s biggest consumer of coal, but it still plays a huge role in countries like Germany, Poland and the US.

Or do we want to reverse climate change? If so, our society needs revolutionary rethinking. Cars, freight and planes would have to all but disappear.

Sunshine and wind are abundant in many countries and not polluting in themselves (the production of parts, installation and noise pollution aside). But who will bear cost of realising an entirely new smart electricity grid? What power generation will be used as back-up on the days the wind doesn’t blow and the sun doesn’t shine?

This blog is intentionally bipartisan. I am interested in solutions, not ideology. Developing solutions that address climate change and pollution, while also supporting development and fairness, and allowing for profitability. This requires both creative thinking and diverse inputs. We can benefit from the efficiency and dynamism markets encourage without rejecting the crucial role governments can and do play – and should, since safety is at stake.

Misunderstanding of energy issues is pervasive – exacerbated by misleading articles in the media. And our politicians struggle to promote their own energy policies, as they themselves lack clarity about the issues.

A lot of activists with worthy motivations – preventing dangerous climate change from engulfing the planet or radiation from poisoning another generation of young Japanese – make hasty suggestions about how to deal with the problems that worry them.

This isn’t surprising as energy issues are complex. They don’t conform to classic economic models. Each sector seems to have its own strange dynamic. Gas is regional. It is transported by pipelines and blighted by geopolitical manoeuvring. And it has yet to make strong in-roads into the transport fuel market to compete with petrol. It is still mainly being used by industry and for heating.

Oil is traded a hundred times more in paper than in physical barrels. This liquidity stems both from its being easy to transport as well as from strong competition. Yet, fundamental constraints affect the oil market too. The stuff of value is the refined petroleum product obtained from processing crudes. And the refineries that do this are both very expensive and inflexible, and can only be used to refine a particular crude oil.

Oil’s price level directly affects inflation and the cost of living in most of the countries that consume it. And, in the big producing countries, it often forms the backbone of their governments’ budgets, and can dramatically increase or decrease income levels.

Electricity may not be the biggest contributor to climate change, but the debate around renewable energy, particularly solar and wind power, takes centre-stage here. Electricity markets reflect their infrastructural base as electricity can’t be stored it must be consumed immediately after it is created.

The make-up of electricity systems varies greatly according to country – and within nations. For example, New Zealand’s predominantly renewable electricity mix is based on geothermal and hydropower. This is only possible because of the country’s local geographic and climatic conditions.

The often forgotten market is dirty, but abundant coal.

Coal is usually local. It is also the fuel that would suffer most if a price for carbon was integrated in its valuation. A little appreciated fact is that shifting 1% of global coal usage to natural gas would be the equivalent of increasing current renewable energy production by 11%.[ii]

A good understanding of the dynamics of the energy industry and markets is necessary if we are to be serious about addressing the global problems we face; whether these are fair consumer prices, climate change, energy poverty and access, economic and industrial growth, energy supply security or global financial stability. I’m very serious about these – although I don’t believe the solutions are easy or obvious. But we mustn’t be dismayed or dissuaded by the complexity of problems that face us. We will discuss them here.


[i] Although a cheekier analyst might suggest that energy efficiency – not wasting energy – is the cheapest fuel we have.

[ii] Data from BP Energy 2035 Energy Forecast, C.Ruhl, January 2014