Gas goes global

Unlike the highly liquid global oil market, natural gas has always been traded regionally. Asia, Europe and North America represent three different gas markets with their own unique dynamics.

Regional gas markets

Asia is very reliant on LNG (liquefied natural gas) imports. Natural gas demand significantly outstrips low levels of domestic production. Prices spiked after the Fukushima Daiichi disaster in 2011 when Japan began importing record volumes of gas for electricity generation to replace the output of nuclear power plants that were shut down.

North American gas production has always been strong, but exploded over the past few years. Hydraulic fracturing (or fracking) activity and the discovery of significant shale gas reserves halved North American gas prices between 2010-11. Prices remain at historic lows today. Henry Hub in Louisiana, where North American gas is physically delivered as well as virtually traded, is the world’s most liquid spot and futures market for natural gas. North America’s well-developed pipeline infrastructure also minimises transportation costs and promotes access to the market. And a high degree of competition lowers the barriers to entry.

Europe’s numerous trading hubs are still developing and are yet to match Henry Hub’s liquidity. Until recently the majority of European wholesale gas buyers maintained long-term contracts with mega-suppliers – namely Russia’s Gazprom and Norway’s Statoil. According to the Oxford Energy Institute, 2015 was the first year that more than fifty-percent of gas trades in Europe took place on the spot market. Demand has yet to return to pre-2008 levels and is still soft across the continent, but prices remain consistently higher than in the US.

Gas producers rely on pipeline infrastructure to connect supply with demand centres. This is why North America’s shale gas revolution and the subsequent decline in natural gas prices have not affected European prices – no pipeline crosses the Atlantic. But, LNG can easily be shipped between the continents. Why then are the world’s two biggest gas markets still disconnected?

Intercontinental LNG trade

LNG (liquefied natural gas) is made by cooling natural gas to -162ºC. This transformation to liquid shrinks the volume of the gas 600 times, making it safe and easy to ship. LNG is colourless, odourless and non-toxic. Nevertheless, the added cost of liquefaction, sea transportation in specialised vessels and regasification at the destination has so far limited global arbitrage opportunities.

Yet, a barrage of new LNG investment over the past few years has lead some to speculate that natural gas markets are globalising. The International Energy Agency claims that global liquefaction capacity will increase by forty-five percent between 2015 and 2021, with most of this growth coming from the United States and Australia. If this glut makes enough cheap LNG available then North American and European gas prices might slowly converge.

In February, the Cheniere Energy LNG terminal at Sabine Pass between Texas and Louisiana was the first to begin exporting. In anticipation of a LNG supply glut Eastern European countries, including Poland and Lithuania, have been building regasification terminals. Lithuania is testing floating regasification technology – offshore plants connected by pipeline to the shore. Spain, being part of a peninsula, is isolated from the European continent’s pipeline network. Historically, this has made it an important destination for LNG cargoes. In fact, the economic downturn since 2008 created an opportunity for Spanish buyers to reload LNG cargoes and sell them in Asia where prices are higher. This churn enhances liquidity. Otherwise, LNG is injected into the network all over Europe. There are important regasification terminals in the Mediterranean: Italy, Greece and France, as well as north-western Europe: the UK, the Netherlands and on France’s west coast.

US LNG producers are increasingly flexible too – offering variable volume contracts or FOB (free-on-board) cargoes. Variable volume contracts permit buyers to increase or decrease the amount of gas they take depending on their needs. They may purchase extra volumes to take advantage of high spot prices – reselling the LNG cargo or trading gas locally. Or they may reduce their volume off-take when local demand is low. FOB means a buyer has not yet been found nor locked into delivery. An LNG cargo leaves the liquefaction terminal and can be bought and resold “on board”. The cargo may eventually be dumped in a spot market at a loss if a buyer can’t be found, but LNG suppliers’ willingness to send out FOB cargoes shows liquidity to be improving.

Not yet a single market

European countries are keen to reduce their dependence on Russian gas for political reasons. However, uncertainty remains as to whether US LNG can compete with Gazprom on price.  Analysts at the Oxford Energy Institute estimate Gazprom’s cost of delivering gas to Germany to be 3.5 USD per mmbtu (million British thermal unit). Whereas the break-even price for the cheapest US LNG supplies is around 4.3 USD per mmbtu – even with Henry Hub still trading at historic lows. Gazprom, Europe’s largest gas supplier, has significant spare production capacity and some of the lowest cost production in the world. Given these conditions, LNG traders are unlikely to win a price war on the continent.

In sum, greater supply and liquidity in the global LNG market offers some opportunities for arbitrage between the continents and provides European gas buyers with options. This does have the potential to disrupt Europe’s monopolies and introduce greater competition into the market.  Yet, LNG and pipeline gas markets are not one and the same. Whilst the price gap persists, gas markets will retain their regional characteristics.


 

Coal condemned

During the last decade, the majority of the OECD countries decoupled their economic growth from energy consumption. Normally these rise in tandem – a trend that persists in developing countries and world’s soon-to-be fastest growing and most populous nation, India.

This decoupling happened as developed nations shifted to providing services and building knowledge economies, which is less energy-intensive than industrial production and manufacturing. China too has started down this path. Policy-makers now talk of “decarbonising” the economy. That is, only producing and consuming energy which does not release greenhouse gases into the atmosphere and contributing to climate change.

Decarbonisation is currently focussed in the electricity sector where it is being helped along by policy incentives. Subsidies, guaranteed prices for electricity and tax-breaks dramatically boosted the growth in renewable electricity generation across Europe in the last few years. The liberalisation of Europe’s electricity markets and new regulation improving competition also played a role. Although, falling prices and technology gains spurred the sector’s expansion more than any government policy, particularly for solar power.

For renewables’ expansion to make any difference to greenhouse gas emissions coal-fired power production has to be tackled. Although it is cheap, burning coal releases significantly more greenhouses gases than other fossil fuels including gas in the electricity sector and oil in transportation. Europe’s aging fleet of coal-fired plants are also extremely inefficient at generating electricity compared to newer gas-fired units. A quarter of electricity in the European Union and almost forty-percent in the United States is still generated by burning coal. It is around two-thirds of the electricity mix in China where the resulting air pollution in its major cities is fuelling a sense of urgency.

Political leaders are aware of this danger and are acting to reduce coal production and consumption in many countries around the world. By 2025 all coal-fired power in the United Kingdom will be shut down according to current plans. New Zealand will close its two remaining large-scale coal-fired power plants in 2018. The provincial government of Alberta in Canada, where the tar sands industry alone produces more emissions than Portugal, has announced plans to phase-out coal power over the next fifteen years. China’s goal is to cap coal consumption in 2025 and accelerate its decline thereafter.

President Obama’s Clean Power Plan intends to restrict emissions from current coal-fired power plans, substitute coal with gas-fired or zero-carbon generation and impose strict emissions standards on new plants. The goal is to cut emissions in the electricity sector by a third relative to 2005 levels. Coal mining states have fiercely contested this “war on coal”, which is bound to be difficult for certain towns and regions whose local economy and workforce are dependent on coal mining, not just in the US. Nevertheless, coal needs to eventually exit the electricity sector if the commitments made by the US and 195 other countries at COP21 in Paris late last year are to materialise.

Yet, none of the above is enough to slow climate change. India is set to contribute the greatest share of growth in global coal demand in the future, mostly from increased domestic production. How it intends to reach its goal to produce forty-percent of its electricity from non-fossil fuel sources by 2020 is unclear. In Germany, coal’s resurgence in the power sector has cast a shadow over its achievements in increased generation from renewable resources. Angela Merkel’s government is working on a plan to phase out coal by mid-century. From the European Unions’s biggest economy this is too long to wait. Decarbonising electricity production by phasing out coal remains a long way off. Coal has been condemned by the world’s leaders but not yet replaced.

La question nucléaire: à la recherche d’une énergie parfaite

En 1985, deux agents français ont sabordé le navire Rainbow Warrior de l’organisation écologiste Greenpeace dans le port d’Auckland en Nouvelle Zélande. Cette opération, effectuée dans la mer territoriale néo-zélandaise, a été conduite sur ordre explicite du Président de la République Française, François Mitterrand. Le Rainbow Warrior faisait alors cap vers l’atoll de Moruroa, situé en Polynésie française, où les militants de Greenpeace avaient tenté d’empêcher des essais nucléaires menés par les militaires français.

Cet incident a marqué un tournant décisif dans la politique néo-zélandaise puisque la résistance au nucléaire est devenue une partie importante de l’identité nationale néo-zélandaise. Cela est toujours le cas aujourd’hui. Tandis que la France se montre toujours fière de ses prouesses technologiques dans le domaine nucléaire, également en matière de production énergétique.

En France, le nucléaire constitue deux tiers de la production électrique, alors que quatre-vingt pour cent de l’électricité est produite de façon renouvelable en Nouvelle-Zélande. Cela ne signifie pas pour autant que Nouvelle Zélande produit moins d’émissions de gaz à effet de serre. Au contraire, vu son immense secteur agricole, les émissions par habitant la place en 5ème position dans le monde, soit seize places devant la France. En outre, c’est grâce à sa géographie que les néo-zélandais parviennent à générer la plupart de leur électricité de façon renouvelable, par le biais de la hydroélectricité et de la géothermie. Peu de pays bénéficient d’un tel écosystème qui permet la production d’électricité par ces moyens peu polluants. Normalement, pour augmenter leur capacité à produire de façon renouvelable, les autres pays sont obligés d’investir dans le solaire ou l’éolien, qui ne sont pas sans coûts.

L’énergie nucléaire a clairement des avantages. Elle ne produit pas d’émissions GHG en générant de l’électricité. Deuxième avantage, les français paient un prix moyen d’électricité beaucoup moins cher que les néo-zélandais. De plus, sa capacité de production est très stable, alors qu’en Nouvelle-Zélande, pendant les années de précipitations inférieures à la moyenne, le risque de coupures d’approvisionnement augmente beaucoup vu la dépendance du pays à l’hydroélectricité.

Face à l’obligation de fournir de l’électricité à une population beaucoup plus importante en France qu’en Nouvelle-Zélande, le gouvernement français a dès lors choisi de se tourner vers le nucléaire. En revanche, la consommation néo-zélandaise ne nécessite pas les gros volumes d’électricité que les centrales nucléaires sont capables de générer. Même s’ils n’étaient pas politiquement contre l’énergie nucléaire, les néo-zélandais n’en auraient pas besoin. Cela rend cette décision politique plus facile pour le petit pays qu’est la Nouvelle Zélande.

Néanmoins, nombreux sont les peuples qui ne soutiennent pas non plus l’énergie nucléaire, compte tenu des risques associés trop graves pour être ignorés. C’est le cas notamment aujourd’hui en Allemagne et au Japon, où la majorité de citoyens s’élève contre l’énergie nucléaire, ainsi qu’en Nouvelle-Zélande. En plus de nombreux décès causés par une explosion nucléaire, des maladies graves frapperaient par la suite tous ceux se trouvant à proximité. Après une telle catastrophe, l’environnement local resterait toxique pour des décennies. L’économie agricole de la région serait détruite. Aucune compensation ne suffirait à couvrir les pertes humaines et les dégradations de qualité de la vie pour les survivants. Même si le risque d’accident est statiquement faible, cela ne règle en rien le problème des déchets radioactifs produits lors de la production d’électricité.

Pourtant, le nombre de gens tué dans les explosions des mines de charbon ou affecté par les maladies pulmonaires est plus important que le nombre de victimes des accidents et des bombes nucléaires combinés. À la fin, il faut comprendre que tous les choix ont leur compromis en énergie. Le peuple français ainsi que le peuple néo-zélandais, comme tant d’autres, font face à cette problématique et essaie d’allier l’abordabilité, l’accessibilité et la sécurité tout en limitant les polluants.

En reconnaissant sa violation de la loi internationale par rapport à le naufrage du Rainbow Warrior, la France s’est excusée officiellement en 1988 et les relations diplomatiques avec la Nouvelle-Zélande ont été rétablies. En 1991 un accord d’amitié a été signé entre la France et la Nouvelle-Zélande. Depuis cet accord les deux gouvernements consacrent des fonds à la promotion d’échanges culturels. Les bourses scolaires font partie de ce programme culturel. L’auteure de ce blog était bénéficiaire de cette bourse en 2013 et elle est venue en France pour étudier la politique énergétique. Ce blog vise à comprendre les choix politiques en matière d’énergie sans condamner pour autant, tout en réalisant que l’énergie parfaite n’existe pas.

Renewables menace traditional power model

Lots of things are shaking up the traditional power model. A decade ago gas and coal power plants were very profitable. Retail companies, which distribute to industrial and household consumers, bought wholesale electricity at a price that always covered operating costs and got a healthy boost during peak demand hours. Even fairly inefficient power plants could expect to have enough profitable operating hours to keep in the money.

Electricity generated from renewable energy sources has altered this dynamic, most noticeably in Germany where Energiewende policies encourage renewable energy development. The upfront costs of new renewable energy projects are subsidised. Once operational wind or solar parks are given priority access to the distribution grid – they can always market the electricity they produce. Furthermore, the government pays out a “feed-in” tariff. That is, guarantees a certain price for every megawatt hour of electricity generated by a wind or solar farm.

These policies have discouraged private investment that might have brought more competitive renewable energy technologies, ones that do not require government subsidies, to market sooner. Nevertheless, Germany’s goal to get 60% of its electricity from renewable sources by 2050 is on track. The eventual success or failure of these policies is the experiment the entire world is watching.

However, the rapid expansion of renewables has upset the incumbents – traditional thermal power generators that use coal and gas as fuel. Renewables harm their profitability for a number of reasons.

First of all, the average wholesale electricity price is lower. Once a wind turbine or solar panel is installed operating costs are near zero because the wind and sun are both free fuel sources. The price of electricity depends on where inflexible consumer demand matches producers’ supply. The producers with the lowest operating costs are always called on first. Then the price of electricity creeps up the supply curve until consumer demand is satisfied. Every day, every hour, producers receive a price for the electricity they produce based on the last generator called up in the so-called “merit-order.” The graph below illustrates this.

meritorder

The last generator is always less efficient. This means that its operating costs are higher and it will only generate electricity when the price covers these operational costs. Now that renewables are part of the merit order, we don’t climb as high up the curve as before. On average, prices have decreased, implying the recurrent “last generator” is more efficient than a few years ago.

Second, thermal power plants’ operating hours are down. A lot of electricity is being generated from renewable sources replacing supply previously provided by gas and coal power plants. This point is obvious – money can only be earned when your power plant is online and generating electricity. This adds to traditional power plants’ woes. Prices are weakened, but their sale volumes are also harmed as renewable energy production grows.

Third, renewables are very variable. Already gas power plants have shut down and new projects have been cancelled because they could not survive the renewables’ economic shake-up. However, some days the sun does not shine, or there is no wind, and traditional generators are still needed. This can vary hour-by-hour, minute-by-minute. Only very modern gas facilities are capable of ramping up and down to balance unpredictable renewable production. Although, this is simply not profitable in a weak price climate where operating hours are down. So, these rapid-response power plants are no longer being built. This is called the “missing money” problem.

Fourth: the rise of the prosumer. Households and businesses have been installing solar panels with the hope of decreasing their electricity bills. In some countries, excess electricity that is generated can be injected into the grid earning you cash back from the local electricity retailer. This is how the word prosumer came about. Households connected to the distribution grid were traditionally pure consumers. Having installed solar panels the consumer is now a producer as well. They may even be electricity self-sufficient on sunny days or exceed their own electricity needs, affording them the opportunity to sell back to the grid.

Alone, one solar powered household cannot produce enough electricity to perturb the traditional power model. Yet, the arrival of hundreds and thousands of prosumers on the grid has the potential to be very destabilising as seen with commercial solar generation.

These four issues are part of a bigger problem: electricity infrastructure and markets are inflexible. They were not designed to manage decentralised and unpredictable electricity production. Nevertheless, this is the model we will have to manage in the future. Distribution lines also have ramping limits constraining how quickly power flows can be increased or decreased. Volatile prosumers and commercial wind and solar farms compromise the grid’s technical stability. And we still need back-up for the days and hours when renewable electricity production is low. Managing variable electricity production demands a model where this responsibility is shared by the market players.


Graph was found at www.powermarket.eu

Why is oil suddenly so cheap?

Between 1998 and 2008 the price of oil increased ten-fold. Everyone was talking about peak oil – the idea that production would plateau and demand for oil would outstrip supply. Skyrocketing prices would force us to replace what we put in our cars. In 2008 prices broke the $100/barrel ceiling – and then kept climbing.

What does it mean to say oil is $100 per barrel? When we talk about dollars we mean American dollars. Barrels are just a standard measure of volume (159 litres). The price of oil refers to a benchmark – a reference price. In the United States this is West Texas Intermediate (WTI), which is a blend of crude oils from diverse suppliers, which mingle at a physical hub in Cushing, Oklahoma. In Europe the benchmark is called Brent – a blend of North Sea produced crude oils. For a crude to become a benchmark there must be enough suppliers and enough barrels that the supply, and therefore the price, cannot be controlled by one player.

Crude oil needs to be processed and refined to produce the more valuable products, such as gasoline or jet fuel, that industry and consumers can actually use. So it is refineries that buy crude oil from producers. However refiners don’t all buy WTI. There are many different varieties of crude oil. An oil producer will mark up or mark down their crude oil relative to a reference price. This is why we call WTI and Brent benchmarks.

What determines this mark up or mark down? The quality of your oil. Oil can be light or heavy – a lighter, less viscous crude produces more of the more valuable petroleum products such as gasoline during the refining process. Oils are also classified as sweet or sour, which refers to the sulphur content. Sulphur is a pollutant which must be removed during refining. This is expensive to do. So the more sour your oil the more pricey the sulphur-removal process.

Oil producers are in the game to turn a profit.The WTI price affects your profitability as a producer.  For example, let’s say WTI is $100/barrel. If it costs you $70/barrel to extract crude oil from a well and you are selling it at a $20 discount to WTI then your profit per barrel is $10/barrel. (That’s a huge win.)

However, if the international price of oil – the WTI benchmark – falls $10 then you lose your profit margin.

A few years after WTI hit $100/barrel (and then went higher) it suddenly fell to $50. Multiply that by the millions of barrels being bought and sold and you can imagine there were some pretty big winners and losers. That’s the situation we have today. But why?

In less than one hundred and fifty words:

1. Since 2008 Europe underwent a recession which dampened demand for oil as economic growth dwindled and consumer spending dropped.

2. The United States is the world’s biggest oil consumer and used to drive global demand. However, over the past few years an energy revolution no one predicted took place in the US. As shale gas “frackers” began producing natural gas and pumping it into the regional pipeline networks, associated shale oil was also being produced. The best fields are called “wet” since they produce oil as well as gas, oil being more valuable. So within a few years the US went from being a huge importer to near self-sufficiency in crude oil production.

3. This meant that global oil markets were dramatically over-supplied. The supply glut happened because two of the biggest markets – Europe and the US – simply weren’t as hungry for crude oil anymore.

These days we actually talk about peak demand for oil. Technology and extraction processes get better every year, so it’s likely we will be able to produce oil for many years to come. However, production will become more expensive and, as environmental pressures weigh in, oil will become pricey enough that consumers and governments look for replacements. Even if that means buying an electric car or investing heavily in public transport.

Peak demand didn’t happen when prices skyrocketed in 2008. It might yet. Or it’s possible that demand for oil is dropping away. The international price will wane if other energy sources or energy efficiency measures become more competitive and attractive. We will have to wait and see if oil demand recovers in Europe or if Asia’s growth fills the gap.